Python进程池:multiprocessing.pool

本网站用的阿里云ECS,推荐大家用。自己搞个学习研究也不错
在利用Python进行系统管理的时候,特别是同时操作多个文件目录,或者远程控制多台主机,并行操作可以节约大量的时间。当被操作对象数目不大时,可以直接利用multiprocessing中的Process动态成生多个进程,十几个还好,但如果是上百个,上千个目标,手动的去限制进程数量却又太过繁琐,此时可以发挥进程池的功效。

Pool可以提供指定数量的进程供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求;但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程来它。

例1:使用进程池

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print “msg:”, msg
    time.sleep(3)
    print “end”

if __name__ == “__main__”:
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = “hello %d” %(i)
        pool.apply_async(func, (msg, ))  #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print “Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”
    pool.close()
    pool.join()  #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print “Sub-process(es) done.”

一次执行结果

mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~ello 0

 

msg: hello 1

msg: hello 2

end

msg: hello 3

end

end

end

Sub-process(es) done.

函数解释:
•apply_async(func[, args[, kwds[, callback]]]) 它是非阻塞,apply(func[, args[, kwds]])是阻塞的(理解区别,看例1例2结果区别)
•close()    关闭pool,使其不在接受新的任务。
•terminate()    结束工作进程,不在处理未完成的任务。
•join()    主进程阻塞,等待子进程的退出, join方法要在close或terminate之后使用。

执行说明:创建一个进程池pool,并设定进程的数量为3,xrange(4)会相继产生四个对象[0, 1, 2, 4],四个对象被提交到pool中,因pool指定进程数为3,所以0、1、2会直接送到进程中执行,当其中一个执行完事后才空出一个进程处理对象3,所以会出现输出“msg: hello 3”出现在”end”后。因为为非阻塞,主函数会自己执行自个的,不搭理进程的执行,所以运行完for循环后直接输出“mMsg: hark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”,主程序在pool.join()处等待各个进程的结束。

例2:使用进程池(阻塞)

#coding: utf-8
import multiprocessing
import time

def func(msg):
    print “msg:”, msg
    time.sleep(3)
    print “end”

if __name__ == “__main__”:
    pool = multiprocessing.Pool(processes = 3)
    for i in xrange(4):
        msg = “hello %d” %(i)
        pool.apply(func, (msg, ))  #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去

    print “Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~”
    pool.close()
    pool.join()  #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    print “Sub-process(es) done.”

一次执行的结果

msg: hello 0

end

msg: hello 1

end

msg: hello 2

end

msg: hello 3

end

Mark~ Mark~ Mark~~~~~~~~~~~~~~~~~~~~~~

Sub-process(es) done.

例3:使用进程池,并关注结果

import multiprocessing
import time

def func(msg):
    print “msg:”, msg
    time.sleep(3)
    print “end”
    return “done” + msg

if __name__ == “__main__”:
    pool = multiprocessing.Pool(processes=4)
    result = []
    for i in xrange(3):
        msg = “hello %d” %(i)
        result.append(pool.apply_async(func, (msg, )))
    pool.close()
    pool.join()
    for res in result:
        print “:::”, res.get()
    print “Sub-process(es) done.”

一次执行结果

msg: hello 0

msg: hello 1

msg: hello 2

end

end

end

::: donehello 0

::: donehello 1

::: donehello 2

Sub-process(es) done. 

例4:使用多个进程池

#coding: utf-8
import multiprocessing
import os, time, random

def Lee():
    print “\nRun task Lee-%s” %(os.getpid()) #os.getpid()获取当前的进程的ID
    start = time.time()
    time.sleep(random.random() * 10) #random.random()随机生成0-1之间的小数
    end = time.time()
    print ‘Task Lee, runs %0.2f seconds.’ %(end – start)

def Marlon():
    print “\nRun task Marlon-%s” %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 40)
    end=time.time()
    print ‘Task Marlon runs %0.2f seconds.’ %(end – start)

def Allen():
    print “\nRun task Allen-%s” %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 30)
    end = time.time()
    print ‘Task Allen runs %0.2f seconds.’ %(end – start)

def Frank():
    print “\nRun task Frank-%s” %(os.getpid())
    start = time.time()
    time.sleep(random.random() * 20)
    end = time.time()
    print ‘Task Frank runs %0.2f seconds.’ %(end – start)
       
if __name__==’__main__’:
    function_list=  [Lee, Marlon, Allen, Frank]
    print “parent process %s” %(os.getpid())

    pool=multiprocessing.Pool(4)
    for func in function_list:
        pool.apply_async(func)    #Pool执行函数,apply执行函数,当有一个进程执行完毕后,会添加一个新的进程到pool中

    print ‘Waiting for all subprocesses done…’
    pool.close()
    pool.join()    #调用join之前,一定要先调用close() 函数,否则会出错, close()执行后不会有新的进程加入到pool,join函数等待素有子进程结束
    print ‘All subprocesses done.’

一次执行结果

parent process 7704
Waiting for all subprocesses done…
Run task Lee-6948
Run task Marlon-2896
Run task Allen-7304
Run task Frank-3052
Task Lee, runs 1.59 seconds.
Task Marlon runs 8.48 seconds.
Task Frank runs 15.68 seconds.
Task Allen runs 18.08 seconds.
All subprocesses done.

————————————–分割线 ————————————–

CentOS上源码安装Python3.4  http://www.linuxidc.com/Linux/2015-01/111870.htm

《Python核心编程 第二版》.(Wesley J. Chun ).[高清PDF中文版] http://www.linuxidc.com/Linux/2013-06/85425.htm

《Python开发技术详解》.( 周伟,宗杰).[高清PDF扫描版+随书视频+代码] http://www.linuxidc.com/Linux/2013-11/92693.htm

Python脚本获取Linux系统信息 http://www.linuxidc.com/Linux/2013-08/88531.htm

Ubuntu下用Python搭建桌面算法交易研究环境 http://www.linuxidc.com/Linux/2013-11/92534.htm

Python 语言的发展简史 http://www.linuxidc.com/Linux/2014-09/107206.htm

Python 的详细介绍请点这里
Python 的下载地址请点这里 

未经允许不得转载:演道网 » Python进程池:multiprocessing.pool

赞 (0)
分享到:更多 ()

评论 0

评论前必须登录!

登陆 注册